3. Решение задач на сложные проценты

Сложным процентом называется сумма дохода, которая образуется в результате инвестирования денег при условии, что сумма начисленного простого процента не выплачивается в конце каждого периода, а присоединяется к сумме основного вклада и в следующем платежном периоде сама приносит доход [3].

Сложные проценты – это проценты, полученные на начисленные проценты.

Формула сложного процента – это формула, по которой рассчитывается итоговая сумма с учётом начисления процентов.

х (1+ 0,01а) n – периодическое увеличение некоторой величины на одно и то же число процентов.

где х – начальный вклад, сумма.

а – процент(ы) годовых

n- время размещения вклада в банке

Но, мы можем и уменьшать цену, поэтому эту формулу можно записать и по- другому: х(1- 0,01а) n – периодическое уменьшение некоторой величины на одно и то же число процентов.

Представим, что вы положили 10 000 руб в банк под 10 % годовых.

Через год на вашем банковском счету будет лежать

сумма SUM = 10000 + 10000*10% = 11 000 руб.

Ваша прибыль – 1000 рублей.

Вы решили оставить 11 000 руб. на второй год в банке под те же 10%.

Через 2 года в банке накопится 11000 + 11000*10% = 12 100 руб.

Прибыль за первый год (1000 рублей) прибавилась к основной сумме (10 000р) и на второй год уже сама генерировала новую прибыль. Тогда на 3-й год прибыль за 2-й год прибавится к основной сумме и будет сама генерировать новую прибыль. И так далее.

Этот эффект и получил название сложный процент.

Когда вся прибыль прибавляется к основной сумме и в дальнейшем уже сама производит новую прибыль.

Вкладчик открыл счет в банке, внеся 2000 рублей на вклад, годовой доход по которому составляет 12%, и решил в течение шести лет не брать процентные начисления. Какая сумма будет лежать на счете через шесть лет?

Решим эту задачу по формуле сложных процентов

где х – первоначальный вклад.

а – процент годовых.

n – время размещения вклада в банке.

Применим эту формулу к нашей задаче

Читайте также:  Отделения банка росбанк в москве

первоначальный вклад – 2000

процент годовых – 12

n – 6 лет, значит

2000(1 + 0,12) 6 = 2000*1,126 = 2000*1,973823 = 3947,65

ОТВЕТ: через 6 лет на счете будет лежать сумма в виде 3947 руб. и 65 коп..

Вывод: решила задачу, применив новое свойство нахождения процентов по формуле сложных процентов.

Задача 7 (ЕГЭ 2006год)

После двух последовательных снижений цен на одно и то же число процентов стоимость товара с 400 рублей снизилась до 324 рублей. На сколько процентов стоимость товара снижалась каждый раз?

Решим эту задачу по формуле сложных процентов – х (1-0,01а) n

ОТВЕТ: стоимость товара каждый раз снижалась на 10%

Задача 8(ЕГЭ 2006год)

По пенсионному вкладу банк выплачивает 12% годовых. По истечению каждого года эти проценты капитализируются, то есть начисленная сумма присоединяется к вкладу. На данный вид вклада был открыт счет на 80000 рублей, который не пополнялся и с которого не снимались деньги в течении двух лет. Какой доход был получен по истечении этого срока?

Эту задачу можно решить двумя способами: 1)по действиям

2)по формуле сложных процентов

1)узнаем доход за первый год

2)найдем сумму на счете после первого года

80000+ 9600= 89600руб.

3)определим доход за второй год

89600* 0,12= 10752 руб.

4)узнаем конечную сумму на счете

10752 + 89600= 100352руб.

5)найдем доход после двух лет

100352- 80000= 20352 руб.

ОТВЕТ: по истечении двух лет получился доход в размере 20352 руб.

Эту же задачу решим по формуле банковских процентов: х(1 + 0,01а) n

Пусть: х – 80000 – начальный вклад

n – 2 года, получим:

80000(1+ 0,12) 2 = 80000 * 1,12 2 = 100 352 руб.

Этим узнали конечную сумму на счете после двух лет. Теперь надо узнать какой доход был получен. Для этого из конечной суммы вычтем начальный вклад.

100352 – 80000 = 20 352руб.

ОТВЕТ: по истечении срока был получен доход в размере 29 352 руб.

Вывод: решила задачу двумя способами, доказав, что проще и быстрее решить задачу по формуле сложных процентов, а не по действиям.

Задача 9(ЕГЭ 2006год)

Банк предлагает клиентам два вида вкладов. Первый «До востребования» со следующим порядком начисления процентов: каждые 6 месяцев счет увеличивается на 10% от суммы, имеющиеся на счету клиента в момент начисления. Второй вклад «номерной» с ежегодным начислением процентов по вкладу. Сколько процентов годовых должен начислять банк по второму вкладу, чтобы равные суммы, положенные клиентом на каждые из указанных счетов, через два года оказались снова равными?

Читайте также:  Как в банкомате поменять пин код

Решим эту задачу уравнением, применяя форму банковских процентов.

Пусть: х – начальный вклад; тогда через 6 месяцев сумма на счете будет равна

через год сумма будет

Тогда через два года сумма будет равна х(1+0,1) 4

Сумма вклада «Номерной» через два года, после двух начислений равна х(1+0,01х) 2

х(1+0,01х) 2 = х(1+0,1) 4

ОТВЕТ: банк должен начислять 21% годовых, по «номерному» вкладу.

Вывод: решила задачу, применив свойство сложных процентов.

Задача 10 (ЕГЭ 2006год)

Для определения оптимального режима снижения цен социологи предложили фирме с первого января снижать цены на товар в двух магазинах двумя способами. В одном магазине – в начале каждого месяца (начиная с февраля) на 20%, в другом через каждые два месяца, в начале третьего (начиная с марта) на одно и тоже число процентов, причем такое, чтобы через полгода (первого июля) цены снова стали одинаковыми. На сколько процентов надо снижать ценны товара через каждые два месяца во втором магазине?

Решим эту задачу с помощью формулы сложных процентов: х(1+0,01а) n

Пусть: х – начальная цена, тогда, через месяц, после первого понижения, в первом магазине, цена на товар будет равна х(1-0,2) после второго понижения х(1-0,2) 2 ;

Тогда, через полгода (после шести понижений) цена будет равна х(1-0,2) 4

Цена товара, во втором магазине после трех понижений на а% будет равна

х(1-0,01а) 2 Получаем уравнение:

х(1-0,01а) 2 = х(1-0,2) 4

ОТВЕТ: на 36% надо снижать цены во втором магазине.

Задача 11 (ЕГЭ 2006 год)

В соответствии с договором фирма с целью компенсации потерь от инфляции была обязана в начале каждого квартала (3 месяца) повышать сотруднику зарплату на 2%. Однако с связи с финансовыми затруднениями она смогла повышать ему зарплату только раз в полгода (в начале следующего полугодия). На сколько % фирма должна повышать зарплату каждые полгода, чтобы первого января следующего года зарплата сотрудника была равна той, которую он получил бы в режиме повышения, предусмотренной договором?

Читайте также:  Https i25 client belapb by signin

Для решения составим таблицу:

Через какое время повышается на сколько % повышается Какая зарплата будет
Через каждые 3 месяца 2%
Через каждые полгода а%

По таблице составим уравнение:

х(1+0,02) 4 = х(1+0,01а) 2

ОТВЕТ: через каждый полгода зарплату сотрудникам надо поднимать на 4,04%

Разделы: Математика

«Хороший учитель обязан понимать, что никакую задачу нельзя исчерпать до конца. Этот взгляд он должен прививать и своим ученикам».
Д. Пойа.

Введение.

Особое внимание я уделяю текстовым задачам на проценты, которые часто встречаются в практике вступительных экзаменов в экономические вузы, но недостаточно полно рассматриваются в школе. Умение выполнять процентные вычисления, − безусловно, одна из самых необходимых математических компетенций. Однако не только те, кто уже давно окончили школу, робеют при виде процентов. Даже на ЕГЭ решаемость задач на проценты не превышает 20 % . Это говорит о том, что такого типа задачи следует решать не только в младших классах, где изучается эта тема, но и на протяжении всех лет обучения в школе.

1. При решении задач на проценты используются основные формулы:

1% числа а равен а.

р% от числа а равно а.

Если известно, что некоторое число а составляет р% от х, то х можно найти из пропорции

х − 100%,

откуда х= а.

Пусть имеются числа a, b, причем а 4 + х∙1,5 3 + х∙1,5 2 +х∙1,5

Для этого вынесем х за скобку и вычислим сумму геометрической прогрессии, в которой b = 1,5 и q = 1,5.

Известно, что размер вклада увеличился по сравнению с первоначальным на 725%.

Это значит, что он стал составлять 825% от начального, т.е. увеличился в 8,25 раз.

Сумма всех слагаемых последнего столбика в 8,25 раз больше, чем 3900 тыс.руб.

Администратор
Роман

Tel. +380685083397
yukhym.roman@gmail.com
skype, facebook:
roman.yukhym

Решение задач
Андрей

facebook:
dniprovets25

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Ваше имя